Réduction de Jordan (par la dualité)

Lemme 1. Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent d'indice $q \ge 1$. Pour tout $x \in E$ tel que $u^{q-1}(x) \ne 0$, la famille $\mathcal{B}_{u,x} = (u^k(x))_{1 \le k \le q-1}$ est une famille libre de E et l'ev $F = \text{Vect}(\mathcal{B}_{u,x})$ est u-stable.

Démonstration.

Comme $u^{q-1} \neq 0$ il existe $x \in E$ tel que $u^{q-1}(x) \neq 0$. Soient $\lambda_0, \ldots, \lambda_{q-1} \in K$ tels que :

$$\sum_{k=0}^{q-1} \lambda_k u^k(x) = 0$$

Montrons par récurrence sur j que les λ_j sont tous nuls.

$$0 = u^{q-1} \left(\sum_{k=0}^{q-1} \lambda_k u^k(x) \right) = \sum_{k=0}^{q-1} \lambda_k u^{q-1+k}(x) = \lambda_0 u^{q-1}(x)$$

Et puisque $u^{q-1}(x) \neq 0$ on a $\lambda_0 = 0$.

Supposons que $\lambda_0 = \ldots = \lambda_j = 0$, alors $\sum_{k=j+1}^{q-1} \lambda_k u^k(x) = 0$, et:

$$0 = u^{q-j-2} \left(\sum_{k=j+1}^{q-1} \lambda_k u^k(x) \right) = \sum_{k=0}^{q-1} \lambda_k u^{q-j-2+k}(x) = \lambda_{j+1} u^{q-1}(x)$$

Et à nouveau, on en déduit que $\lambda_{j+1} = 0$. Les λ_j sont donc tous nuls et la famille $\mathcal{B}_{u,x}$ est libre. La stabilité de F par u découle alors du fait que u est nilpotent.

Théorème 2. Soit $u \in \mathcal{L}(E)$ un endomorphisme nilpotent d'indice $q \geqslant 1$. Alors il existe une base $\mathcal{B} = B_1 \cup \ldots \cup B_r$ de E telle que chaque s.e.v. $E_i = \text{Vect } \mathcal{B}_i$ soit stable par u et que la matrice de $u|_{E_i}$ soit :

$$J_i = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \cdots & 1 & 0 \end{pmatrix} \in M_{q_i}(\mathbb{K}), \ avec \ q_i = \dim_{\mathbb{K}} E_i$$

Démonstration.

On va montrer le théorème par récurrence sur la dimension n de E, pour cela cherchons auparavant une décomposition de E en somme directe adaptée.

On peut remarquer que comme u est nilpotent d'indice q alors u est nilpotent d'indice q. On peut alors appliquer le lemme à u: il existe $u^{q-1}(\varphi) \neq 0$, et on pose $H = \text{Vect}(\varphi, u(\varphi), \dots, u^{q-1}(\varphi))$. De plus, comme $u^{q-1}(\varphi) \neq 0$, il existe $u \in E$ tel que $u \in u^{q-1}(x) \neq 0$ et donc $u^{q-1}(x) \neq 0$. On pose $u \in Vect(x, \dots, u^{q-1}(x))$ qui, d'après le lemme, est de dimension finie u. Soit maintenant $G = H^{\circ}$, on a :

$$\dim E = \dim E^* = \dim G + \dim H = \dim G + \dim F$$

Comme H est ${}^{t}u$ -stable, G est u-stable. Montrons que $F \cap G = \{0\}$.

Soit
$$y = \sum_{k=0}^{q-1} \lambda_k u^k(x) \in F \cap G$$
.

Comme G est u-stable, $u^{q-1}(y) \in G$, et :

$$0 = \varphi(u^{q-1}(y)) = \sum_{k=0}^{q-1} \lambda_k \varphi(u^{q-1+k}(x)) = \lambda_0 u^{q-1}(x)$$

Donc $\lambda_0 = 0$, puis, par une récurrence simillaire à celle du lemme, on montre que tous les λ_k sont nuls et donc que $F \cap G = \{0\}$. Ainsi, $E = F \oplus G$.

Montrons maintenant le résultat principal par récurrence sur n.

Le résultat est évident pour n = 1.

Supposons le résultat acquis au rang n-1, montrons le au rang n.

On complète la base $\mathcal{B}_{u,x}$ de F par une base de G en une base \mathcal{B} de E. On a alors :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} J_q & 0 \\ 0 & A_{n-q} \end{pmatrix} \quad \text{où} \quad J_q = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in M_q(\mathbb{K})$$

 A_{n-q} est la matrice de $u|_G$ dans la base considérée. Si q=n c'est fini, sinon on applique l'hypothèse de récurrence à $u|_G$ qui est bien un endomorphisme nilpotent d'indice inférieur ou égal à q.

Théorème 3. Soit $u \in \mathcal{L}(E)$ non nul tel que $\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$ et $\Pi_u = \prod_{i=1}^\rho (X - \lambda_i)^{\beta_i}$. Il existe une base \mathcal{B} de E dans laquelle la matrice de u soit de la forme :

$$A = \begin{pmatrix} J_1 & 0 \\ & \ddots \\ 0 & J_\rho \end{pmatrix}$$

avec pour tout $k \in [1, \rho]$:

$$J_{k} = \begin{pmatrix} \lambda_{k} & 0 & 0 & \cdots & 0 \\ \varepsilon_{k,2} & \lambda_{k} & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \varepsilon_{k,\alpha_{k}-1} & \lambda_{k} & 0 \\ 0 & \cdots & 0 & \varepsilon_{k} & \lambda_{k} \end{pmatrix} \in M_{\alpha_{k}}(\mathbb{K}), \ où \ \varepsilon_{k,i} \in \{0,1\}$$

Démonstration.

D'après le lemme des noyaux appliqué à χ_u on a $E = \bigoplus_{k=1}^p N_k$.

Chaque sous-espace N_k est de dimension α_k et stable par u. De plus, $v_k = (u - \lambda_k Id)|_{N_k}$ est nilpotente d'indice

 β_k . Il existe donc une base \mathcal{B}_k de N_k telle que :

$$\operatorname{Mat}_{\mathcal{B}_{k}}(v_{k}) = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ \varepsilon_{k,2} & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \varepsilon_{\alpha_{k}-1} & 0 & 0 \\ 0 & \cdots & 0 & \varepsilon_{k,\alpha_{k}} & 0 \end{pmatrix} \in M_{\alpha_{k}}(\mathbb{K}), \text{ où } \varepsilon_{k,i} \in \{0,1\}$$

et donc:

$$\operatorname{Mat}_{\mathcal{B}_k}(u|_{N_k}) = \begin{pmatrix} \lambda_k & 0 & 0 & \cdots & 0 \\ \varepsilon_{k,2} & \lambda_k & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \varepsilon_{k,\alpha_k-1} & \lambda_k & 0 \\ 0 & \cdots & 0 & \varepsilon_{k,\alpha_k} & \lambda_k \end{pmatrix} \in M_{\alpha_k}(\mathbb{K})$$

Conclusion. Toute matrice d'endomorphisme nilpotent peut s'écrire sous la forme d'une matrice par blocs diagonale, dont les blocs diagonaux sont des blocs de Jordan. \triangleleft

Références

[Rom] Jean-Étienne Rombaldi. Algèbre et Géométrie. DeBoeck